U.S. Department of Health & Human Services Divider Arrow National Institutes of Health Divider Arrow NCATS

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}

    {{facet.count}}
    {{facet.count}}
Estetrol is the natural human fetal selective estrogen receptor modulator. It is synthesized exclusively by the human fetal liver during pregnancy. Estetrol has a moderate affinity for human estrogen A receptor (ERa) and estrogen B receptor (ERb). Estetrol may be suitable as a potential drug for human use in applications such as hormone replacement therapy (vaginal atrophy, hot flushes), contraception and osteoporosis. The most common drug-related adverse events were lower abdominal pain, nausea, headache, dysmenorrhoea, breast enlargement and acne. Estetrol had been in clinical trials for the treatment of breast and prostate cancers.
Cabotegravir is an investigational drug that is being studied for the treatment and prevention of HIV infection. Cabotegravir belongs to a class (group) of HIV drugs called integrase inhibitors. Integrase inhibitors block an HIV enzyme called integrase. (An enzyme is a protein that starts or increases the speed of a chemical reaction.) By blocking integrase, integrase inhibitors prevent HIV from multiplying and can reduce the amount of HIV in the body. Cabotegravir does not require boosting with an additional drug. Two forms of cabotegravir are being studied: tablets that are taken by mouth (known as oral cabotegravir or oral CAB) and a long-acting injectable form that is injected into the muscle (known as cabotegravir LA or CAB LA; LA stands for "long-acting"). (A long-acting drug formulation works over a long period of time. Using this type of drug might mean that the drug could be taken less often, making a treatment or prevention regimen simpler to take.) Cabotegravir is in Phase-III clinical trials for HIV infections.
KX-01 is a dual inhibitor of Src kinase and tubulin polymerization. KX01 promotes the induction of p53, G2/M arrest of proliferating cell populations and subsequent apoptosis via the stimulation of Caspase-3 and PARP cleavage. The drug was developed by Kinex Pharmaceuticals and reached phase II of clinical trials for the treatment of Castration-Resistant Prostate Cancer and Actinic Keratosis. KX-01 demonstrated good in vitro pofile against different cancer cell lines with IC50 in nanomolar range.

Class (Stereo):
CHEMICAL (ABSOLUTE)


Relebactum sodium (MK-7655) is a piperidine analog 3 that inhibits class A and C β-lactamases (in vitro). It is being investigated for use in treatment of infectious diseases, such as treatment of gram-negative bacterial infections. Its potential as an alternative to existing medicines in the treatment of drug-resistant bacterial infections is being studied. Clinical trials have been conducted and are still ongoing to evaluate the efficacy and safety of relebactum sodium in treatment of intra-abdominal infections, urinary tract infections (such as pyelonephritis), hospital-acquired and ventilator-associated bacterial pneumonias, and gram-negative bacterial infections.
Revefenacin (trade name Yupelri is a long-acting muscarinic antagonist developed by Mylan Ireland ltd for the treatment of chronic obstructive pulmonary disease (COPD). It has similar affinity to the subtypes of muscarinic receptors M1 to M5. In the airways, it exhibits pharmacological effects through inhibition of M3 receptor at the smooth muscle leading to bronchodilation. The competitive and reversible nature of antagonism was shown with human and animal origin receptors and isolated organ preparations. In preclinical in vitro as well as in vivo models, prevention of methacholine- and acetylcholine-induced bronchoconstrictive effects was dose-dependent and lasted longer than 24 hours.
Bictegravir is a component of the fixed-dose combination product bictegravir/emtricitabine/tenofovir alafenamide (BIKTARVY®), which received marketing approval for the treatment of human immunodeficiency virus (HIV) infection by the U.S. Food and Drug Administration in February 2018. Bictegravir inhibits the strand transfer activity of HIV-1 integrase, an HIV-1 encoded enzyme that is required for viral replication. Inhibition of integrase prevents the integration of linear HIV-1 DNA into host genomic DNA, blocking the formation of the HIV-1 provirus and propagation of the virus.
Osimertinib is an oral, third-generation epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) drug developed by AstraZeneca Pharmaceuticals. Its use is indicated for the treatment of metastatic non-small cell lung cancer (NSCLC) in cases where tumour EGFR expression is positive for the T790M mutation as detected by FDA-approved testing and which has progressed following therapy with a first-generation EGFR tyrosine kinase inhibitor. Approximately 10% of patients with NSCLC have a rapid and clinically effective response to EGFR-TKIs due to the presence of specific activating EGFR mutations within the tumour cells. More specifically, deletions around the LREA motif in exon 19 and exon 21 L858R point mutations are correlated with response to therapy. Osimertinib is an epidermal growth factor receptor (EGFR) tyrosine kinase inhibitor (TKI) that binds to certain mutant forms of EGFR (T790M, L858R, and exon 19 deletion) that predominate in non-small cell lung cancer (NSCLC) tumours following treatment with first-line EGFR-TKIs. As a third-generation tyrosine kinase inhibitor, osimertinib is specific for the gate-keeper T790M mutation which increases ATP binding activity to EGFR and results in poor prognosis for late-stage disease. Furthermore, osimertinib has been shown to spare wild-type EGFR during therapy, thereby reducing non-specific binding and limiting toxicity. Osimertinib is marketed under the brand name Tagrisso.
Cholic acid is a primary bile acid synthesized from cholesterol in the liver. Endogenous bile acids including cholic acid enhance bile flow and provide the physiologic feedback inhibition of bile acid synthesis. The mechanism of action of cholic acid has not been fully established; however, it is known that cholic acid and its conjugates are endogenous ligands of the nuclear receptor, farnesoid X receptor (FXR). FXR regulates enzymes and transporters that are involved in bile acid synthesis and in the enterohepatic circulation to maintain bile acid homeostasis under normal physiologic conditions. U.S. Food and Drug Administration approved Cholbam (cholic acid) capsules, the first FDA approved treatment for pediatric and adult patients with bile acid synthesis disorders due to single enzyme defects, and for patients with peroxisomal disorders (including Zellweger spectrum disorders).
Bedaquiline (trade name Sirturo, code names TMC207 and R207910) is a diarylquinoline anti-tuberculosis drug, which was discovered by a team led by Koen Andries at Janssen Pharmaceutica. When it was approved by the FDA on the 28th December 2012, it was the first new medicine to fight TB in more than forty years, and is specifically approved to treat multi-drug-resistant tuberculosis. Bedaquiline is a diarylquinoline antimycobacterial drug that inhibits the proton pump of mycobacterial ATP (adenosine 5'-triphosphate) synthase, an enzyme that is essential for the generation of energy in Mycobacterium tuberculosis. Bacterial death occurs as a result of bedaquiline.
Fidaxomicin (trade names Dificid, Dificlir in Europe) is the first in a new class of narrow spectrum macrocyclic antibiotic drugs indicated for treatment of Clostridium difficile-associated diarrhea. Lipiarmycin (fidaxomicin), a metabolite of Actinoplanes deccanensis nov. sp. was first isolated in pure form in 1970s and was considered as antibiotic from its chemical and physico-chemical characteristics. It demonstrated high activity against Gram-positive bacteria, including strains resistant to the medically important antibiotics and protected mice experimentally infected with Streptococcus haemolyticus. Fidaxomicin is non-systemic, meaning it is minimally absorbed into the bloodstream, it is bactericidal, and it has demonstrated selective eradication of pathogenic Clostridium difficile with minimal disruption to the multiple species of bacteria that make up the normal, healthy intestinal flora. Although the exact mechanism of action has yet to be fully elucidated, fidaxomicin may bind to and inhibit bacterial DNA-dependent RNA polymerase, thereby inhibiting the initiation of bacterial RNA synthesis. When orally administered, this agent is minimally absorbed into the systemic circulation, acting locally in the gastrointestinal tract. Fidaxomicin appears to be active against pathogenic Gram-positive bacteria, such as clostridia, enterococci, and staphylococci, but does not appear to be active against other beneficial intestinal bacteria. The maintenance of normal physiological conditions in the colon can reduce the probability of Clostridium difficile infection recurrence. It is marketed by Cubist Pharmaceuticals after acquisition of its originating company Optimer Pharmaceuticals.